Identification of Natural Images and Computer Generated Graphics Based on Hybrid Features

نویسندگان

  • Fei Peng
  • Juan Liu
  • Min Long
چکیده

Examining the identification of natural images (NI) and computer generated graphics (CG), a novel method is proposed based on hybrid features. Since the image acquisition pipelines are different, some differences exist in statistical, visual, and noise characteristics between natural images and computer generated graphics. Firstly, the mean, variance, kurtosis, skew-ness, and median of the histograms of grayscale image in the spatial and wavelet domain are selected as statistical features. Secondly, the fractal dimensions of grayscale image and wavelet sub-bands are extracted as visual features. Thirdly, considering the shortage of the photo response non-uniformity noise (PRNU) acquired from wavelet based de-noising filter, a pre-processing of Gaussian high pass filter is applied to the image before the extraction of PRNU, and the physical features are calculated from the enhanced PRNU. In the identification, a support vector machine (SVM) classifier is used in experiments and an average classification accuracy of 94.29% is achieved, where the classification accuracy for computer generated graphics is 97.3% and for natural images is 91.28%. Analysis and discussion show that the method is suitable for the identification of natural images and computer generated graphics and can achieve better identification accuracy than the existing methods with fewer dimensions of features. DOI: 10.4018/978-1-4666-4006-1.ch002

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting photographic and computer generated composites

Nowadays, sophisticated computer graphics editors lead to a significant increase in the photorealism of images. Thus, computer generated (CG) images result to be convincing and hard to be distinguished from real ones at a first glance. Here, we propose an image forensics technique able to automatically detect local forgeries, i.e., objects generated via computer graphics software inserted in na...

متن کامل

Directional Stroke Width Transform to Separate Text and Graphics in City Maps

One of the complex documents in the real world is city maps. In these kinds of maps, text labels overlap by graphics with having a variety of fonts and styles in different orientations. Usually, text and graphic colour is not predefined due to various map publishers. In most city maps, text and graphic lines form a single connected component. Moreover, the common regions of text and graphic lin...

متن کامل

Identification of Factors Affecting Quality of Teaching Engineering Drawing using a Hybrid MCDM Model

Identification of the factors affecting teaching quality of engineering drawing and interaction between them is necessary until it is determined which manipulation will improve the quality of teaching this course. Since the above issue is a Multi-Criteria Decision Making (MCDM) problem and on the other hand, we are faced with human factors, the Fuzzy DEMATEL method is suggested for solving it. ...

متن کامل

A Hybrid Method for Mammography Mass Detection Based on Wavelet Transform

Introduction:  Breast  cancer  is  a  leading  cause  of  death  among  females  throughout  the  world.  Currently,  radiologists are able to detect only 75% of breast cancer cases. Making use of computer-aided design (CAD)  can play an important role in helping radiologists perform more accurate diagnoses.   Material and Methods: Using our hybrid method, the background and the pectoral muscle...

متن کامل

Distinguishing Computer-generated Graphics from Natural Images Based on Sensor Pattern Noise and Deep Learning

Computer-generated graphics are images generated by computer software. The rapid development of computer graphics technologies has made it easier to generate a photorealistic computer graphics, and these graphics are quite difficult to distinguish from natural images by our naked eyes. In this paper, we propose a method based on sensor pattern noise and deep learning to distinguish computer-gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJDCF

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012